Monodromy and betti numbers of weighted complete intersections

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Powers of Complete Intersections: Graded Betti Numbers and Applications

Abstract. Let I = (F1, . . . , Fr) be a homogeneous ideal of the ring R = k[x0, . . . , xn] generated by a regular sequence of type (d1, . . . , dr). We give an elementary proof for an explicit description of the graded Betti numbers of Is for any s ≥ 1. These numbers depend only upon the type and s. We then use this description to: (1) write HR/Is , the Hilbert function of R/Is, in terms of HR...

متن کامل

Monodromy of Complete Intersections and Surface Potentials

Following Newton, Ivory and Arnold, we study the Newtonian potentials of algebraic hypersurfaces in R. The ramification of (analytic continuations of) these potential depends on a monodromy group, which can be considered as a proper subgroup of the local monodromy group of a complete intersection (acting on a twisted vanishing homology group if n is odd). Studying this monodromy group we prove,...

متن کامل

Hodge Numbers of Complete Intersections

Suppose X is a compact Kähler manifold of dimension n and E is a holomorphic vector bundle. For every p ≤ dim C X we have a sheaf Ω p (E) whose sections are holomorphic (p, 0)-forms with coefficients in E. We set and we define the holomorphic Euler characteristics χ p (X, E) := q≥0 (−1) q h p,q (X, E). It is convenient to introduce the generating function of these numbers χ y (X, E) := p≥0 y p ...

متن کامل

Non-simplicial Decompositions of Betti Diagrams of Complete Intersections

We investigate decompositions of Betti diagrams over a polynomial ring within the framework of Boij–Söderberg theory. That is, given a Betti diagram, we decompose it into pure diagrams. Relaxing the requirement that the degree sequences in such pure diagrams be totally ordered, we are able to define a multiplication law for Betti diagrams that respects the decomposition and allows us to write a...

متن کامل

Toric complete intersections and weighted projective space

It has been shown by Batyrev and Borisov that nef partitions of reflexive polyhedra can be used to construct mirror pairs of complete intersection Calabi–Yau manifolds in toric ambient spaces. We construct a number of such spaces and compute their cohomological data. We also discuss the relation of our results to complete intersections in weighted projective spaces and try to recover them as sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1985

ISSN: 0040-9383

DOI: 10.1016/0040-9383(85)90009-6